Book Review – Mindstorms

In an effort to utilize my librarian background, I am embarking on a series of book reviews, to be published on Fridays. These reviews will cover science education books for and about children, as well as reality-based children’s books for a Montessori lifestyle.

A picture of the book, Mindstorms, by Seymour Papert

As relevant today as it was 35 years ago…

Target Audience: Adults (especially teachers, parents)
Papert, Seymour. Mindstorms: Children, Computers and Powerful Ideas. 2nd ed. Perseus Books: Cambridge, Massachusetts, 1993.

Mindstorms

It’s taken me awhile to write this review, partly because I have so much to say and yet, I’m not sure how to organize everything I’ve read. Quite frankly, I really need to read the book again, but I had to return it since I borrowed it via interlibrary loan. It was as if I found myself at an amusement park, but only had an hour left before it closed. What would I do and what was the most important thing that I wanted to see? Sometimes, you just need to sit and think about it. That being said, I am going to attempt to provide an overview, but wanted to throw it out there that I could have used a little more time to digest the information.

A picture of the Table of Contents from the book, Mindstorms, by Seymour Papert

I do think I understood the overall point of his book, namely that students should be learning with more real-life experiences, thus constructing their own knowledge, and computers can be used to help them reflect their learning. However, he seems to differ in his educational thinking from the Montessori method because he acknowledges that interest plays a big role in how well a student learns. For example, in a primary Montessori classroom, students are encouraged to explore their own interests, but there is a limited prepared environment from which they can explore. Papert seems to advocate for an open-ended, real-life curriculum where a student can explore their own interests in daily life, but still be guided by a facilitator.  I thought it sounded a lot like project-based learning with a little bit of homeschooling thrown in.

But ‘teaching without curriculum’ does not mean spontaneous, free-form classrooms or simply ‘leaving the child alone.’ It means supporting children as they build their own intellectual structures with materials drawn from the surrounding culture.
– p. 32

Throughout the book, he uses his own interests – gears and mathematics – to make the case for creative computer use in schools and learning. In chapter one, he discusses the culture of computers and the hopes (and fears) teachers and educators have for their use in school. He mentions that there is indeed a potential for students to only consume computer programs, to use them to idly fill up their time, but that others will use them to make further explorations. It might allow children to tackle complex subjects at an earlier age because physical barriers, such as handwriting and spelling, will be eliminated by the use of computers.

Though the book was originally published in 1980, this second edition was published in 1993. So, how can a book on ‘computers in schools’ still be relevant more than 20 years later?

A picture of the opening screen of a Scratch project.

A mini-project on the country of Greece. Programmed completely by R, age 9.5.

Sadly, it’s incredibly relevant because computers are still primarily being used to transmit information. It’s top-down learning where a teacher dictates what a student will learn rather than using the computer to help a child to express the concepts that they learned and make their own changes. Papert advocates for using computers to help students see what they are learning, for them to construct their own knowledge based on the programs they are running. While the topic they tested included geometry concepts, he acknowledges that computers could and should be used in other ways.

A picture from the book, Mindstorms. It shows simple line drawings that could be made withthe robot turtle.

A sampling of projects that students could make, and while doing so would learn key math concepts.

He and his colleagues created the LOGO computer language and used it to teach geometry. Since Papert’s background, training and interests are in mathematics, he uses math as a backdrop to explain his theories and his desire to see our thinking made visible. This is especially relevant to me as I am always on the look out for more reality-based ways of using math with my own children. I will admit that he sometimes lost me during his mathspeak (it has been 25 years since I took geometry), but it really isn’t about learning geometry, it’s about learning how to make learning visible so that the students can recognize their mistakes, fix their “bugs” and learn how to learn. He was definitely an advocate of a growth mindset before it became a ubiquitous term.

Our children grow up in a culture permeated with the idea that there are ‘smart people’ and ‘dumb people’…as a result, children perceive failure as relegating them either to the group of ‘dumb people’ or, more often, to a group of people ‘dumb at x.
– p.43

Teaching fifth graders how to program with the simplified text-based language of LOGO was not meant to teach them to be programmers, but rather to help them express their ideas of geometry. Papert wasn’t talking about specific programs (or apps), rather he was discussing learning in general, thinking about thinking, and using computers to express that learning. In fact, he meant for the LOGO turtle to show them where they made mistakes so that they could learn to fix them – in context. No teacher required, thus making the learning more valuable and sticky.

A sample project of how a student fixed their own "bug," by noticing that the line drawing was not going out (to form a triangular roof), but was going in instead.

A sample project of how a student fixed their own “bug,” by noticing that the line drawing was not going out (to form a triangular roof), but was going in instead.

This book has made it very clear that the creators of the icon-based programming language, Scratch, were following in his work and wanted to honor his vision of constructionist learning.  Having read some of their papers on Scratch and taken the course on Tinkering from the Exploratorium Museum, I was able to understand much more about how and why these tools were developed.

A picture of 3 AAA batteries, alligator clips and a tiny lightbulb.

I made these circuit blocks while taking the Tinkering with STEM course. A great way to help students learn about direct current.

As might be expected from a book on education from a computer scientist, his theories and main ideas are sometimes muddled and he seems to jump from one abstract topic to the next. His work with LOGO was partially based on his work with Jean Piaget in the 1960s and partially from his own work at MIT where he worked on artificial intelligence. His theories are sometimes unclear, I think, because he doesn’t want to have a prescribed curriculum. Also, there’s the question of cognitive, age-based abilities. Was he advocating for preschoolers to use a computer to reflect their learning? I don’t know.

That being said, I really enjoyed being challenged by this book. It made me rethink some of my own teachings and I am now ready to tackle the Making Thinking Visible book that has been sitting on my shelf since last fall.

A picture of the book, Making Thinking Visible.

From the Harvard-based project that tried to help students see (and change) their own learning.